bulletin of the chemical society of Japan, vol. 45, 2956-2957 (1972)

¹¹⁹Sn Mössbauer Quadrupole Splittings in Compounds with Sn-Mn Bonds

B. V. LIENGME, J. R. SAMS*†, and J. C. SCOTT*

Department of Chemistry, St. Francis Xavier University, Antigonish, N.S., Canada *Department of Chemistry, University of British Columbia, Vancouver, B.C., Canada (Received October 12, 1971)

Onaka, Sasaki, and Sano¹) have recently reported 119 Sn Mössbauer data for the four series of compounds $(CO)_5$ MnSnR $_{3-n}X_n$, where R=Me, Ph, and X=Cl, Br. The quadrupole splitting values (Δ) for n=1, 2 are always higher than those for n=0, 3, rather than showing a monotonic change as n increases, but no explanation was offered for this unexpected order. We have recently suggested²) that a similar trend in Δ for the compounds $(\pi - C_5H_5)$ Fe $(CO)_2$ SnPh $_{3-n}$ Cl $_n$ is due to a change in sign of the quadrupole coupling constant, which can be explained on the basis of point-charge calculation. We wish to show that the results of Onaka, et al.¹) are susceptible to a like explanation.

The point-charge model assumes that the electric field gradient (EFG) is an additive quantity,³⁾ so that the quadrupole splitting can be evaluated from partial quadrupole splitting (PQS) values, [L], for the various ligands. Since the EFG at tin is largely due to an imbalance in the polarity of the tin-ligand σ-bonds, [L] values are related to this polarity and can be correlated with the Taft inductive constants for the ligands.⁴⁾ The model has been discussed in detail by Parish and Platt,⁴⁾ who also derived a number of PQS values from data for pentacoordinate tin compounds. It has been suggested that these PQS values should not be applied to compounds in which the tin atom has a different coordination number.⁵⁾ For the

[†] To whom correspondence should be addressed.

¹⁾ S. Onaka, Y. Sasaki, and H. Sano, This Bulletin, 44, 726 (1971).

²⁾ B. V. Liengme, M. J. Newlands, and J. R. Sams, *Inorg. Nucl. Chem. Lett.*, 7, 1223 (1971).

³⁾ M. G. Clark, Mol. Phys., 20, 257 (1971).

⁴⁾ R. V. Parish and R. H. Platt, Inorg. Chim. Acta, 4, 65 (1970).

⁵⁾ A. G. Maddock and R. H. Platt, J. Chem. Soc., A, 1971,

present tetracoordinate derivatives we have therefore derived a self-consistent set of PQS values. If we assume an arbitrary value for [Cl], then point-charge expressions for molecules of the types SnAB3 and SnA₂B₂⁴⁾ with experimental Δ values²⁾ for (CO)₅Mn-SnCl₃, (CO)₅MnSnMe₃, and [(CO)₅Mn]₂SnPh₂ yields PQS values for (CO)₅Mn, Me, and Ph, respectively.²⁾ A value for [Br] is obtained from the measured1) splitting in (CO)₅MnSnBr₃. These [L] values are given in footnote (a) to Table 1. It should be noted that our results are independent of the value chosen for [Cl].2) These PQS values are used to compute the EFG tensor elements, assuming tetrahedral bond angles.6) After diagonalising the tensor, the nonvanishing elements are ordered such that $|V_{zz}| \ge |V_{yy}| \ge |V_{xx}|$, then the asymmetry parameter $\eta = (V_{yy} - V_{xx})/V_{zz}$ and $\Delta = \frac{1}{2} eQV_{zz} \left(1 + \frac{\eta^2}{3}\right)^{1/2}$

$$\Delta = \frac{1}{2} e Q V_{zz} \left(1 + \frac{\eta^2}{3} \right)^{1/2}$$

are calculated. The results for a number of compounds with Sn-Mn bonds are presented in Table 1, along with experimental Δ values.

Table 1. Measured and predicted quadrupole SPLITTINGS FOR SOME COMPOUNDS WITH Sn-Mn bonds^{a)}

OII WIII BONDS			
Compound	$\Delta_{obs}^{\mathrm{b})}$ (mm sec ⁻¹	Δ_{pred}) (mm sec ⁻¹)	$\eta_{\it pred}$
(CO) ₅ MnSnCl ₃	1.57	+	0
(CO) ₅ MnSnMeCl ₂	2.62	+2.37	0.85
(CO) ₅ MnSnMe ₂ Cl	2.66	-2.24	0.48
(CO) ₅ MnSnMe ₃	0.61		0
(CO) ₅ MnSnPhCl ₂	2.36	+2.13	0.93
(CO) ₅ MnSnPh ₂ Cl	2.49	-1.95	0.34
(CO) ₅ MnSnPh ₃	0_{c}	-0.50	0
$(CO)_5MnSnBr_3$	1.41	+	0
(CO) ₅ MnSnMeBr ₂	2.51	+2.22	0.83
$(CO)_5MnSnMe_2Br$	2.54	-2.11	0.51
$(CO)_5MnSnPhBr_2$	2.63	+1.97	0.92
(CO) ₅ MnSnPh ₂ Br	2.28	-1.82	0.36
$[(CO)_5Mn]_3SnCl$	1.55^{d}	-1.56	0
(CO) ₅ MnSn(Cl)	2.02^{e}	-1.73	0.18
$[(\pi\text{-}C_5H_5)\text{Fe}(\text{CO})_2]_2$			

- a) PQS values used in the calculations are (in mm sec⁻¹): [Cl] = +0.63, [Br] = +0.56, [Me] = -0.56, [Ph] =-0.40, [(CO)₅Mn]=-0.15.
- Experimental values from Ref. 1) except as noted.
- Splitting not resolved.
- d) Reference 15.
- e) Reference 16.

The calculated Δ values are in only moderately good numerical agreement with the measured1) ones. The lack of better agreement between Δ_{pred} and Δ_{obs} may be due largely to distortions from tetrahedral symmetry. Although insufficient structural data are available to allow a quantitative estimate of such effects, X-ray data for related compounds⁷⁻¹¹⁾ suggest that the distortions are likely to be such as to increase the calculated $|V_{zz}|$ values.^{6,12)} Another possible source of discrepancy is a variation in the σ -character of the tin-halogen bonds as the number of halogens bonded to tin changes. Such an effect has been suggested¹³⁾ for the compounds $RSnCl_3$ and R_2SnCl_2 (R=n-Bu, Ph) on the basis of 35Cl NQR data.

More important than the actual numerical agreement is the fact that in all four series (CO)₅MnSnR_{3-n}X_n the magnitude of Δ is predicted to be greater for n=1and 2 than for n=0 and 3, as observed experimentally. The sign of Δ_{pred} is the sign of the quadrupole coupling constant, eQV22. This sign has recently been shown to be positive for both (CO)₅MnSnCl₃ and (CO)₅Mn-SnCl₂Me,¹⁴⁾ but the signs of eQV_{zz} for the remaining derivatives in Table 1 have not yet been reported. The positive eQV_{zz} for (CO)₅MnSnCl₃ shows that the charge distribution about tin is prolate, i.e., there is greater electron density near the tin atom along the z-(Sn-Mn bond) direction than in the xy-plane, as expected from the greater electronegativity of Cl. The increase in Δ upon replacing one halogen by an organic group is due in part to the non-zero η , but the largest contribution comes from a reorientation of the z-axis of the EFG and a concomitant increase in $|V_{zz}|$. When there are two or three organic groups attached to tin, our calculations predict a negative eQV22 (oblate charge distribution). We hope to verify these predictions in the near future. It is relevant to note that eQV_{zz} for tin is positive in YSnCl₃ and negative in YSnBu₃ $(Y=(\pi-C_5H_5)Fe(CO)_2^{14})$ as predicted by the pointcharge model.2)

The small (or zero) observed splittings for (CO)₅Mn- $SnR_3^{1)}$ and $[(CO)_5Mn]_2SnPh_2^{2)}$ suggest that the σ -bonding characteistics of the (CO)5Mn group and Me or Ph are quite similar. This presumably accounts for the fact that the predicted value of η is less than ~ 0.5 for the cases (CO)₅MnSnR₂X, and greater than ~0.8 for (CO)₅MnSnRX₂. The former molecules approximate to the stoichiometry SnA_3B (for which $\eta=0$), whilst the latter approximate to SnA2B2 (for which $\eta = 1$ if tetrahedral bond angles are assumed).

Finally, it should be noted that our calculations give an adequate estimate of |\(\Delta \) for (CO)₅MnSn(Cl)-[(\pi-C₅H₅)Fe(CO)₂]₂, in which the tin atom is bonded to two different transition metals.

We wish to thank the National Research Council of Canada for financial support, and Dr. G. M. Bancroft for a preprint of his paper.

⁶⁾ G. N. Bancroft, K. D. Butler, and A. T. Rake, J. Organometal. Chem., 34, 137 (1972).

⁷⁾ R. F. Bryan, J. Chem. Soc., A, 1967, 172, 192.

J. E. O'Connor and E. R. Corey, Inorg. Chem., 6, 968 (1967).
P. T. Greene and R. F. Bryan, J. Chem. Soc., A, 1970, 1696, 2261.

¹⁰⁾ H. P. Weber and R. F. Bryan, Acta Crystallogr., 22, 822 (1967).

¹¹⁾ R. F. Bryan, J. Chem. Soc., A, 1968, 696.

¹²⁾ J. R. Sams and J. C. Scott, unpublished results.

E. D. Swiger and J. D. Graybeal, J. Amer. Chem. Soc., 87, 13) 1464 (1965).

¹⁴⁾ B. A. Goodman, R. Greatrex, and N. N. Greenwood, J. Chem. Soc., A, 1971, 1868.

¹⁵⁾ A. N. Karasev, N. E. Kolobova, L. S. Polak, V. S. Shpinel, and K. A. Anisimov, Teor. Eksp. Khim., 2, 126 (1966).

¹⁶⁾ V. I. Gol'danskii, B. V. Borshagovskii, E. F. Makarov, R. A. Stukan, K. A. Anisimov, N. E. Kolobova, and V. V. Skripkin, Teor. Eksp. Khim., 3, 478 (1967).